Week 16

Multiple Equation Models

Rich Frank University of New Orleans December 6, 2012

Multiple equation models

- Also known as simultaneous equation models or systems of equations.
- Why on earth would we ever want to use these models?
- Theory!
- We have reason to believe that our data violate the assumptions underlying the other models we have seen this semester.

MIE	Class 16
NILE	Class 10

Multiple equation models

The most important assumption for the purposes of this class is that the effects that we are modeling are unidirectional—our *x*'s affect our *y*'s, and our *y*'s have **no** effect on our *x*'s.

• However, the social world that we as political scientists are interested in is rarely that simple.

MLE	Class 16
-----	----------

- We have already begun relaxing the assumption that one equation can adequately approximate the phenomena we are interested in.
- Therefore, we have already become familiar with multiple equation models including the ZIP, ZINB, Heckman, and other selection models.

• Therefore, this class is but another effort at relaxing restrictive assumptions we have made in the past.

 One of the most important of these assumptions (dating back to 6002) is that our *x*'s are unrelated to our error term, ε.

MLE	Class 16	5
-----	----------	---

• If a regressor (let's call it Y_2) is associated with our disturbance term, ε_1 , then when our disturbances increase, Y_1 increases.

• This means (in an additional complication we will look at in a few minutes) that Y_2 would be affected if Y_1 was a predictor of Y_2 .

MLE Class 16	
--------------	--

6

• For example, think about economic development and democracy.

 There is a large literature suggesting that economically developed states are more likely to be democratic.

MLE Class 16

MLE	Class 16
-----	----------

 In this example, ε includes everything else besides economic development that can cause democracy.

 One such factor that can effect democracy could be the government's decision to repress its citizens.

MLE	Class 16	1(
-----	----------	----

 But repression can also affect corporations and citizens from wanting to invest in their future.

 People might be more worried about whether security forces are going to throw them out of a helicopter than on starting a new business.

MLE Class 16

11

- Another popular example is the relationship between party affiliation and candidate evaluations.
- The positions that candidates have can affect what party they join as well as how they are evaluated.
- You can also model these types of theoretical relationships.

|--|

The path diagram should look more like this

MLE	Class 16	13
-----	----------	----

MLE	Class 16	14
-----	----------	----

In notation

15

This means that Y₂, economic development, is an endogenous regressor, because it arises in a system where it is related to ε.

 A variable that affects democracy (say distance from Geneva) but does not affect economic development would be considered exogenous.

MLE	Class 16
-----	----------

- If we just run a single equation predicting democracy without taking into account what we know about the reciprocal nature of the relationship between democracy and development, then our OLS estimators would be inconsistent.
- Remember, an estimate is considered consistent if as our sample approaches the size of the population our parameter value approximates the population's value.

MLE Class 16 17

- Therefore in order to get consistent and efficient estimators, we need to take into account what we theoretically know about the world and model this endogeneity.
- This simple example and path diagram hints that there are a large number of potential models that can be adjusted or tweaked to fit the **theoretical** model (path diagram) that we think explains the world.

MLE	Class 16 18
-----	-------------

• We will explore several of the most straightforward and popular models today.

- First, the adjustments we need to make about the distribution of our errors given our theoretical model.
- And then explicitly model these endogenous effects.

 A basic structure of equations can be written as follows:

$$Y_1 = \beta_{01} + \beta_{11}Y_2 + \beta_m X_m + \varepsilon_1$$
$$Y_2 = \beta_{02} + \beta_k X_k + \varepsilon_2$$

- Where X_m represents a vector of variables that affect Y_1 , and X_k represents a vector of variables that affect Y_2 .
- And *m* and *k* are >0

MLE	Class 16 2

MLE	Class 16	21
-----	----------	----

- To obtain a consistent parameter estimate, we assume that ε_1 is uncorrelated with X_m but are correlated with Y_2 .
- In order to estimate the model we also need at least k variables that satisfy the assumption that $E(\varepsilon_1 | X_k) = 0.$
- These k variables therefore have to provide some information about Y_2 but have no effect on ε_1 .

 This model is relatively simple to estimate because all the arrows point in one direction (unidirectional).

• The models are hierarchical.

• This type of model is called **recursive**.

MLE	Class 16	23
-----	----------	----

- However, there are many instances where these assumptions are non-realistic.
- Going back to my development and democracy example, it has been argued that democracies are more likely to attract investment and development because they are perceived to be more stable or have clearer rules and institutional decision-making.
- Therefore, development affects democracy at the same time that democracy affects development.

Non-recursive models

 We could therefore write a more complicated non-recursive system of equations:

$$Y_1 = \beta_{01} + \beta_{11}Y_2 + \beta_m X_m + \varepsilon_1$$
$$Y_2 = \beta_{02} + \beta_{12}Y_1 + \beta_k X_k + \varepsilon_2$$

MLE	Class 16	2:
-----	----------	----

Here, arrows go both directions.

MLE	Class 16	26
-----	----------	----

Limited information models

• If the system is recursive, then you can run the models for Y_1 and Y_2 independently.

 This is considered a *limited information approach* because we are not using all the information we have on what we know about the world.

27

The identification problem

 As Greene (2008: 361-2) discusses, if there exists more than one theory that can lead to the same observed data (observational equivalence), then the model structure is **unidentified**.

- Simultaneous equation models are considered one of three types:
 - Under-identified
 - Identified
 - Over-identified

MLE	Class 16	28

Observational equivalence

Source: Greene (2005)

MLE	Class 16	29

Order condition for identification

- A necessary (but not sufficient) condition for identification is that:
- "In a model of *M* simultaneous equations in order for an equation to be identified, it must exclude at least *M* - 1 variables (endogenous as well as predetermined [exogenous]) appearing in the model. If it excludes exactly *M* -1 variables, the equation is just identified. If it excludes more than *M* -1 variables, it is overidentified,"

-Gujarati (2003: 748)

MLE Class 16

It is easiest to use a table of coefficients

Coefficients					
	Intercept	Y1	Y2	X1	X2
Y1	B01	1	B12	B13	0
Y2	B02	0	1	0	B23

MLE	Class 16 31
-----	-------------

Rank Condition for Identification

• The order condition, you will notice, is necessary, but it is not sufficient to identify a model.

 There will be at least one solution, but there could be more than one.

 We need another condition that is sufficient for uniqueness.

MLE Class 16

Rank Condition for Identification

• "In a model containing M equations in M endogenous variables, an equation is identified if and only if at least one nonzero determinant of order (M - 1)(M - 1) can be constructed from the coefficients of the variables (both endogenous and predetermined) excluded from that particular equation but included in the other equations of the model,"

Gujarati (2003: 750)

- The rank order condition involves establishing matrices of the excluded variables of a particular equation that are included in another equation.
- This would take an additional class to explain to my (and probably your satisfaction).
- Suffice it to say that there is a means of establishing the rank order condition manually, and Stata will reject your model if it is not at least identified.
- Let's move on to estimating models with endogenous regressors.

Two-Stage Lease Squares (2SLS)

- Developed independently by Theil (1953) and Basmann (1957).
- For example, take our **non-recursive model** above where Y_1 and Y_2 (democracy and development, say) were functions of each other.
- Stage 1: Regress Y_1 on all exogenous variables in the system. This gives you the \hat{Y}_1 and $\hat{\varepsilon}$.
- Stage 2: Plug in the predicted $Y_1(\widehat{Y}_1 + \widehat{\varepsilon})$. This estimates an error term that includes the estimated error $\widehat{\varepsilon}_1$ and ε_2 .
- Substantively what this does is asymptotically "purify" Y_1 from the effect of ε_2 .
- This enables us to get consistent estimates as our sample size increases towards the population size.

Three-stage Lease Squares (3SLS)

• **Stage 1**: Same as for 2SLS, but for all equations.

 Stage 2: Estimate covariance matrix of disturbances from the Stage 1 estimates of all the endogenous regressors models

 Stage 3: Using the Stage 2 matrix plug in the instrumented variable values rather than the endogenous variables.

MLE Class 16 36

Three-stage Lease Squares (3SLS)

- Basically, the difference between 2SLS and 3SLS is that 3SLS runs models for all endogenous variables not just the first.
- Using 3SLS with equations that are identified (not over identified) will lead to identical estimates to 2SLS.
- However, 3SLS is more susceptible to model misspecification (because it depends on having the correct matrix of disturbances).
- A benefit is that there are more postestimation tests available (test or testnl).

• Let's try some examples...

 Namely, the interrelationship between democracy and development using Fearon and Laitin's (2003) data.

MLE Class 16 3	MLE
----------------	-----

Polity without controlling for endogeneity

. reg polity2 gdpenl colbrit mtnest Oil ef warl, robust cluster(ccode)

Linear regression

Number of obs	=	6243
F(6, 152)	=	11.26
Prob > F	=	0.0000
R-squared	=	0.2254
Root MSE	=	6.6845

(Std. Err. adjusted for 153 clusters in ccode)

	polity2	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	gdpenl	.6320265	.2112486	2.99	0.003	.2146639	1.049389
	colbrit	2.192107	.976455	2.24	0.026	.2629305	4.121283
	mtnest	.0065496	.0191193	0.34	0.732	0312243	.0443235
	Oil	-5.102077	1.247602	-4.09	0.000	-7.566957	-2.637198
	ef	-4.433521	1.916182	-2.31	0.022	-8.21931	6477328
	warl	1.556295	.8451118	1.84	0.067	113387	3.225977
	_cons	8329061	1.597662	-0.52	0.603	-3.989398	2.323585
_							

. est store ${\tt P_OLS}$

MLE	Class 16	39
-----	----------	----

With 2SLS: first stage

Number of obs = 6243

ivregress 2sls polity2 colbrit mtnest Oil ef warl (gdpenl = Oil year muslim relfrac), ///
> first robust cluster(ccode)

First-stage regressions

153 N. of clusters = F(8, 6234) = 13.32Prob > F = 0.0000R-squared = 0.2034 Adj R-squared = 0.2024Root MSE = 3.9505 Robust gdpenl | Coef. Std. Err. t P>|t| [95% Conf. Interval] colbrit | 1.329785 .7243687 1.84 0.066 -.0902269 2.749798 mtnest | -.0069368 .0144117 -0.48 0.630 -.0351887 .021315 Oil | 3.25208 .9360339 3.47 0.001 1.417131 5.087029 ef | -4.67675 .9701836 -4.82 0.000 -6.578644 -2.774856 .5477171 -3.50 0.000 -2.993181 -.845753 warl | -1.919467 year | .0646421 .0094885 6.81 0.000 .0460414 .0832428 muslim | -.0111938 .0070446 -1.59 0.112 -.0250037 .0026161 relfrac | 2.248686 1.475143 1.52 0.127 -.6431015 5.140474 18.38209 -6.68 0.000 -158.8695 -86.79907 cons | -122.8343

Second stage

Number of obs	=	6243
Wald chi2(6)	=	66.39
Prob > chi2	=	0.0000
R-squared	=	0.0445
Root MSE	=	7.4198

(Std. Err. adjusted for 153 clusters in ccode)

polity2	 Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
gdpenl colbrit mtnest Oil ef warl _cons	1.417127 .920523 .015147 -7.323945 -1.125375 2.805521 -4.921945	.2935135 1.327838 .0163096 2.100681 1.70013 .9799865 1.717969	4.83 0.69 0.93 -3.49 -0.66 2.86 -2.86	0.000 0.488 0.353 0.000 0.508 0.004 0.004	.8418509 -1.681991 0168192 -11.4412 -4.457568 .8847828 -8.289102	1.992403 3.523037 .0471133 -3.206686 2.206818 4.726259 -1.554787
Instrumented: Instruments:	gdpenl colbrit mt	nest Oil ef	warl year	muslim	relfrac	

. est store P_2SLS

Instrumental variables (2SLS) regression

Notice the difference in GDP's Beta

. est table P_OLS P_2SLS, b(\$9.5f) se

Variable	P_OLS	P_2SLS
gdpenl	0.63203	1.41713
	0.21125	0.29351
colbrit	2.19211	0.92052
	0.97646	1.32784
mtnest	0.00655	0.01515
	0.01912	0.01631
Oil	-5.10208	-7.32394
	1.24760	2.10068
ef	-4.43352	-1.12538
	1.91618	1.70013
warl	1.55630	2.80552
	0.84511	0.97999
cons	-0.83291	-4.92194
_	1.59766	1.71797

legend: b/se

MLE	Class 16	42
-----	----------	----

Testing for endogeneity

 If the variables that we think are endogenous are really exogenous, then we would gain efficiency by just using OLS.

 The Hausman test provides one popular means of gauging endogeneity by comparing the coefficients of the endogenous regressors.

Testing for endogeneity

 For one (potentially) endogenous variable, the Hausman (1978) test statistic is:

$$T_{H} = \frac{(\widehat{\beta_{IV}} - \widehat{\beta}_{OLS})^{2}}{\widehat{V}(\widehat{\beta}_{IV} - \widehat{\beta}_{OLS})}$$

 This test statistic is distributed chi-squared with 1 degree of freedom.

Testing for endogeneity

estat endogenous, forcenonrobust

Tests of endogeneity Ho: variables are exogenous

Durbin (score) chi2(1)= 123.603 (p = 0.0000)Wu-Hausman F(1,6235)= 125.938 (p = 0.0000)

 Stata also reports a Durbin test statistic, which assumes exogeneity and tests for endogeneity (the opposite of the Hausman).

First stage diagnostics

estat firststage

First-stage regression summary statistics

 Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	F(3,6234)	Prob > F
gdpenl	0.2034	0.2024	0.0782	176.221	0.0000

Minimum eigenvalue statistic = 176.221

Critical Values	# of end	ogenous	regresso	rs: 1
Ho: Instruments are weak	# of exc	luded in	strument	s: 3
2SLS relative bias	5%	10%	20%	30%
	13.91	9.08	6.46	5.39
2SLS Size of nominal 5% Wald test LIML Size of nominal 5% Wald test	10% 22.30 6.46	15% 12.83 4.36	20% 9.54 3.69	25% 7.80 3.32

MLE Class 16 46

First stage diagnostics

- The partial *R*-squared is the variance that is explained by the instruments after controlling for the endogeneity.
- The *F* statistic is for the joint significance for the instruments.
- There is a rule of thumb that suggests you have strong instruments if the F statistic is greater than 10.

MLE	Class 16	47

What happens if we misspecify a 2SLS?

```
. ivregress 2sls polity2 Oil (gdpenl = Oil), ///
first robust cluster(ccode)
```

equation not identified; must have at least as many instruments not in the regression as there are instrumented variables

```
r(481);
```

MLE	Class 16	48
-----	----------	----

 What happens if instead of some nice continuous variables, we have at least one dichotomous endogenous variable?

 As we have seen numerous times before, if we use least-squares we are going to get heteroskedastic residuals. • You could ignore them...

 But we know better than to do that because it would lead to biased and inconsistent estimates.

MLE	Class 16	5(
-----	----------	----

• Let's try dichotomizing Polity into a dummy variable called dichotomous, which equals 1 if Polity>5.

. est table	P_OLS P_2SI	LS dich, b(%9	9.5f) se
Variable	P_OLS	P_2SLS	dich
gdpenl	0.63203 0.02058	1.41713 0.08169	0.08864 0.01773
colbrit 	2.19211 0.19898	0.92052 0.25479	0.06584 0.07956
mtnest 	0.00655 0.00414	0.01515 0.00467	0.00012 0.00089
	-5.10208 0.26408	-7.32394 0.36768	-0.39356 0.11452
ei warl	0.34296	0.50411	0.10113
cons	0.25690	0.31127	0.06864
i	0.21460	0.47286	0.10240

legend: b/se

Class 16

- In addition to running ivregress using 2SLS, you can also specify LIML or GMM.
- These are different means of specifying the βs, and are outside the scope of what I am trying to cover today.
- GMM is a popular alternative to OLS that estimates a parameter by substituting a population parameter (say μ) with its sample equivalent.

$$E(y - \mu) = 0$$
$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

MLE

Limited Information Maximum Likelihood (LIML)

Also referred to as the least-variance ratio.

 More computationally intensive (you do not want to see the likelihood function).

Its main benefit is its invariance to the normalization of the equation (Greene 2008: 375).

MLE Class 16 53

Let's try using 3SLS

. est table P_OLS P_2SLS Three, b(%9.5f) se

Variable	P_OLS	P_2SLS	Three	
- gdpenl colbrit mtnest Oil ef warl _cons	0.63203 0.02058 2.19211 0.19898 0.00655 0.00414 -5.10208 0.26408 -4.43352 0.34296 1.55630 0.25690 -0.83291 0.21460	1.41713 0.08169 0.92052 0.25479 0.01515 0.00467 -7.32394 0.36768 -1.12538 0.50411 2.80552 0.31127 -4.92194 0.47286		
polity2	+ 			
gdpenl	 		1.46536	\langle
colbrit			2.18466	
mtpost			0.23449	
incliese			0.00420	
Oil			-7.17073	
ef			0.36/03 -3.82107	
			0.48275	
warl			1.52645	
cons			-3.94269	
—	l		0.46807	
adpen]	+ 			
Oil			3.43087	
			0.16846	
year			0.00353	
muslim			-0.03048	
			0.00144	
relfrac			0.44866	
cons			-95.71524	
_			6.96376	

Notice the slightly larger coefficient.

Let's get back to our dichotomous variable problem.

 Suppose that we have one dichotomous variable and one continuous variable.

MLE	Class 16	55
-----	----------	----

Going back to our old two endogenous variable model:

$$Y_1 = \beta_{01} + \beta_{11}Y_2 + \boldsymbol{\beta}_m \boldsymbol{X}_m + \varepsilon_1$$

$$Y_2 = \beta_{02} + \beta_{12}Y_1 + \boldsymbol{\beta}_k \boldsymbol{X}_k + \varepsilon_2$$

• Let's assume that Y_1 is observed dichotomously, where we are interested in the latent continuous variable Y_1^* :

$$Y_{1i} = \begin{cases} 0 \ if \ Y^{1*} < 0 \\ 1 \ if \ Y^{1*} \ge 0 \end{cases}$$

MLE	Class 16	56
-----	----------	----

• This multi-equation instrumental variable model can now be estimated using maximum likelihood.

MLE	Class 16	57
-----	----------	----

The ivprobit likelihood function

$$\ln L_{i} = w_{i} \left[y_{1i} \ln \Phi \left(m_{i} \right) + \left(1 - y_{1i} \right) \ln \left\{ 1 - \Phi \left(m_{i} \right) \right\} + \ln \phi \left(\frac{y_{2i} - x_{i} \boldsymbol{\Pi}}{\sigma} \right) - \ln \sigma \right]$$

where

$$m_i = \frac{z_i \delta + \rho \left(y_{2i} - x_i \Pi \right) / \sigma}{\left(1 - \rho^2 \right)^{\frac{1}{2}}}$$

• From Stata 11 Base Reference Manual: 733.

• Let's try this function on some real data.

MLE	Class 16	58
-----	----------	----

Keshk, Pollins, and Reuveny (2004)

- Keshk, Omar M.G., Brian M. Pollins, & Rafael Reuveny. (2004) "Trade Still Follows the Flag: The Primacy of Politics in a Simultaneous Model of Interdependence and Armed Conflict," *Journal of Politics*, 66(4).
- This article models the interrelationship of trade and conflict.
- Their measure of trade is continuous, but their measure of conflict is dichotomous.
- What to do, what to do?

MLE	Class 16	59

. ivprobit dispute dispute_lag dependence lower_growth lower_democracy alliances capability_ratio //

> (trade = trade_lag gdp_A gdp_B pop_A pop_B distance lower_democracy alliances), robust cluster(cluster)

Fitting exogenous probit model

Iteration 6: log likelihood = -3500.0329

Fitting full model Iteration 3: log pseudolikelihood = -266825.03

Probit model with endogenous regressors	Number of obs	=	143792
	Wald chi2(7)	=	1676.10
Log pseudolikelihood = -266825.03	Prob > chi2	=	0.0000

(Std. Err. adjusted for 6636 clusters in cluster)

	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
++			10.02			0457714
Lrade	.0382846	.0038199	10.02	0.000	.0307978	.0457714
dispute_lag	2.480361	.0833551	29.76	0.000	2.316988	2.643/34
dependence	-59.12915	27.28599	-2.17	0.030	-112.6087	-5.649594
lower_growth	0073218	.0041565	-1.76	0.078	0154684	.0008248
lower_demo~y	1500483	.0205881	-7.29	0.000	1904003	1096964
alliances	.3252931	.0551563	5.90	0.000	.2171888	.4333973
capability~o	0001679	.0001581	-1.06	0.289	0004778	.0001421
_cons	-2.852112	.0481366	-59.25	0.000	-2.946458	-2.757766
+						
/athrho	1284848	.0190344	-6.75	0.000	1657914	0911781
/lnsigma	.412911	.0063298	65.23	0.000	.4005047	.4253172
+ rho	- 1277824	0187236			- 1642889	- 0909263
eigma	1 51121	0095657			1 492578	1 530076
Sigina	1.J1121	.0095057			1.492370	1.550070
Instrumented:	trade					
Instruments: dispute_lag dependence lower_growth lower_democracy alliances capability_ratio trade_lag gdp_A gdp_B pop_A pop_B distance						
Wald test of exogeneity (/athrho = 0): $chi2(1) = 45.56$ Prob > $chi2 = 0.0000$						

MLE

Class	16
Class	1

 Stata conducts a Wald Chi-squared test of the null hypothesis that there is no significant endogeneity between trade and conflict.

 Clearly, our results suggest significant endogeneity.

MLE	Class 16	6
-----	----------	---

What if one of our continuous variables we used in the democracy and development models was truncated?

 We could use instrumental variable tobit developed by Newey (1987). Similar to ivprobit, we are trying to estimate the effect of a continuous variable that is only partially observed:

$$Y_{1i} = \begin{cases} a & if Y^{1*} < a \\ Y^{1*} & if \ a \le Y^{1*} \le b \\ b & if Y^{1*} > b \end{cases}$$

MLE

Ivtobit likelihood function (*Stata reference*: 783)

$$\ln f(y_{2i}|x_i) = -\frac{1}{2} \left\{ \ln 2\pi + \ln \sigma_v^2 + \frac{(y_{2i} - x_i \Pi)^2}{\sigma_v^2} \right\}$$

and

$$\ln f(y_{1i}|y_{2i}, x_i) = \begin{cases} \ln \left\{ 1 - \Phi\left(\frac{m_i - a}{\sigma_{u|v}}\right) \right\} & y_{1i} = a \\ -\frac{1}{2} \left\{ \ln 2\pi + \ln \sigma_{u|v}^2 + \frac{(y_{1i} - m_i)^2}{\sigma_{u|v}^2} \right\} & a < y_{1i} < b \\ \ln \Phi\left(\frac{m_i - b}{\sigma_{u|v}}\right) & y_{1i} = b \end{cases}$$

where

$$m_i = z_i \delta + \alpha \left(y_{2i} - x_i \boldsymbol{\Pi} \right)$$

MLE	Class 16	64
-----	----------	----

 Going back to the Fearon and Laitin (2003) data on development and democracy.

Suppose we truncate logged trade at -4 (trade ranges from -5 to 26.9).

 Going back to the Fearon and Laitin (2003) data on development and democracy.

- Suppose we truncate logged trade at -4.
 - Trade ranges from -5 to 26.9.

MLE	Class 16	66
-----	----------	----

. ivtobit poli	.ty2 colbrit r	ntnest Oil e	ef warl (g	gdpenl = (Oil year musl	im relfrac), ///
Tobit model with endogenous regressors Number of $obs = 6243$						
iobic model wi	enaogenou	regresser	5	Wald	chi2(6) =	19.29
Log pseudolike	$= -30^{\circ}$	964.124		Prob	> chi2 =	0.0037
		(Std.	Err. adiu	sted for	153 clusters	in ccode)
1		Robust				
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
+						
polity2						
gdpenl	4.190278	2.644885	1.58	0.113	9936012	9.374157
colbrit	-2.020339	5.978189	-0.34	0.735	-13.73737	9.696695
mtnest	.0562782	.0542514	1.04	0.300	0500526	.162609
Oil	-16.65878	10.67326	-1.56	0.119	-37.57798	4.26043
ef	7.434987	10.60249	0.70	0.483	-13.34551	28.21549
warl	7.332556	5.117959	1.43	0.152	-2.69846	17.36357
_cons	-20.21693	13.42799	-1.51	0.132	-46.53531	6.101455
+						
gdpenl						
colbrit	1.771894	.7948861	2.23	0.026	.2139456	3.329842
mtnest	0105558	.0149111	-0.71	0.479	039781	.0186694
Oil	3.556262	.9057549	3.93	0.000	1.781015	5.331509
ef	-3.660252	.9242239	-3.96	0.000	-5.471698	-1.848806
warl	-1.618833	.5502685	-2.94	0.003	-2.69734	5403268
year	.0255598	.0241636	1.06	0.290	0218001	.0729197
muslim	0231628	.0078769	-2.94	0.003	0386013	0077243
relfrac	1607206	1.157864	-0.14	0.890	-2.430093	2.108652
_cons	-45.05744	47.74045	-0.94	0.345	-138.627	48.51213
+						
/alpha	-3.513232	2.748541	-1.28	0.201	-8.900273	1.873809
/lns	2.115037	.0550869	38.39	0.000	2.007069	2.223006
/lnv	1.392301	.1398259	9.96	0.000	1.118247	1.666355
++	8 289896	1566617			 7 //1/75	9 2350/8
5 77	4 024099	5626734			3 059487	5 29284
· ·						
Instrumented:	qdpenl					
Instruments:	colbrit mtne	est Oil ef v	warl year	muslim r	elfrac	
Wald test of e	exogeneity (/a	alpha = 0):	chi2(1) =	= 1.6	3 Prob > chi	2 = 0.2012
Obs. summary	3011	left-censo	ored obsei	vations a	at polity2<=-	4
-	3232	uncenso	ored obsei	vations		
	0	right-censo	ored obser	vations		
		-				

Class 16

In summary

- These models (2SLS, 3SLS, ivprobit, and ivtobit) represent some of the most common multiple equation models besides the selection models we have seen in earlier weeks.
- However, there are numerous other models that scholars have developed to empirically model what they have argued theoretically.
- For today I have had you read two such efforts—Clark and Reed (2005) and Reuveny and Lai (2003).
- One of which has nothing but dichotomous dependent variables.

Reuveny and Lai (2003)

• Three equations using 2SLS.

 $DEM_{L} = \beta_{0} + \beta_{L}M_{L} + \beta_{ABU}MID_{ABU} + \beta_{LRU}MID_{LRU} + \varepsilon_{L}$ $DEM_{H} = \theta_{0} + \theta_{H}M_{H} + \theta_{ABU}MID_{ABU} + \theta_{LRU}MID_{HRU} + \varepsilon_{H}$ $MID_{ABU} = \zeta_{0} + \zeta_{AB}X_{AB} + \zeta_{L}DEM_{L} + \zeta_{H}DEM_{H} + \varepsilon_{ABU}$

Clark and Reed (2005)

 A more complex multiple equation model also with three equations with dichotomous dependent variables.

- *Equation 1*: Is the US targeted?
- *Equation 2*: US respond with sanctions?
- *Equation 3*: US respond with force?

70

Clark and Reed (2005)

Also written as:

MLE

$$Y_{1} = \beta_{0} + \beta_{US}X_{US} + \beta_{US}X_{B} + \varepsilon_{1}$$

$$Y_{2} = \theta_{0} + \theta_{US}X_{US} + \theta_{B}X_{B} + \theta_{T}(Y_{1}) + \varepsilon_{2}$$

$$Y_{3} = \zeta_{0} + \zeta_{US}X_{US} + \zeta_{B}X_{B} + \zeta_{T}(Y_{1}) + \varepsilon_{3}$$

71

- Clark and Reed (2005) are therefore modeling a selection equation with two selection mechanisms
 - 1. A state decides to target the US.
 - 2. The US decides how to respond (sanctions or force)
- How are the error structures of the three equations related?
- Is this a recursive or non-recursive model?

MLE	Class 16	72
- How do they estimate the model?
- GHK smooth recursive simulated bivariate probit models (Cappellari and Jenkins 2003; Greene 2008: 823-831).
- Whew, that sounds complicated!
- Cappellari and Jenkins (2003) have made this easily runnable in an ado file (mvprobit).

Let's take a step back...

- Multiple equation models are useful tools for modeling more complex theoretical models where we have reason to believe that effects are not only in one direction.
- They can be estimated using almost every model we have seen previously in this class.
- They require thinking about the **distributions of our errors**.
- Often it can be **difficult to find appropriate instruments** for identifying your models.
- That is why having a strong theoretical foundation is so important.

MLE	Class 16	74