
Week 12

Hazard Models 1

Rich Frank

University of New Orleans

November 8, 2012



 APSA deadline is December 15th.


It will be held in Chicago.

A few things
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 How to increase memory to Stata:

set mem 500m, permanently

 What is the reference category, and why is it 

important?

A few Stata things
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 How to set graph schemes for black and white:

query scheme

set scheme s2mono

 Search documentation for “schemes intro”

A few Stata things
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 Here’s how you generate dummies automagically in 
Stata:

 To generate year dummies:

xi i.year

 To generate country dummies:

xi: i.ccode

 Then when you want to include them in the model 
you type *year or *ccode

A few Stata things
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 We are going to be talking about a particular type 

of model that looks at time in a different way than 

we did last week.

 This group of models all look at the length of 

time until something happens.

Today
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 These are known as:

 Duration models

 Hazard models

 Event history models

 Survival models

 We are going to call them hazard models because 

they are commonly motivated by one of the two 

motivations for these models.
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 These models come from the biostatistics 

literature where researchers were trying to model 

the likelihood of death (the event of interest) 

given some treatment effect.

 Political research began modeling hazards using 

OLS.
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 However, duration data have some characteristics that make OLS 
unsuitable.

 Like event counts, duration must be greater than or equal to 
zero.

 Survival at time t means that you have survived since t-1. This 
means that observations at time t are conditional on observations 
at time t-1.

 Some observations will survive the length of the study. These 
observations are considered censored.  

 Time-varying covariates are not taken into account.

Why not OLS?
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 Criminal recidivism

 How long someone is unemployed

 How long a civil war lasts

 How long a peace between rivals lasts

Examples
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 Why could we just not run a logit model where 
all observations are considered 0 until death, 
which is coded 1?

 Because of the conditionality of the 
observations.

 Therefore what we need is to figure out the 
conditional probability of 𝑡𝑖 given the fact that a 
unit survived to 𝑡𝑖 - 1.
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 Continuous

 Failure can happen and be captured at any time.

 Discrete

 Observations are captured within certain regular 

measures of time (days, months, years).

 The data we have are likely to be discrete time data.

Two Types of Hazard Models
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 The dependent variables are binary.

 0 if the event does not occur at time t.

 1 if the event does not occur at time t.

 These data are considered Binary Time Series 

Cross Section (BTSCS) data.

Discrete
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Example of Discrete Data 

MLE Class 12 14

dyad year dispute jio deml peaceyears

2020 1966 0 53 10 15

2020 1967 0 54.2 10 16

2020 1968 0 55.4 10 17

2020 1969 0 56.6 10 18

2020 1970 0 57.8 10 19

2020 1971 0 59 10 20

2020 1972 0 59.43 10 21

2020 1973 0 59.86 10 22

2020 1974 1 60.29 10 23

2020 1975 1 60.71 10 0

2020 1976 0 61.14 10 0

2020 1977 0 61.57 10 1

2020 1978 0 62 10 2



 As you can see you can have variables like jio

that vary over time.

 Couldn’t we just include a time count and use 

probit or logit?

 e.g. peace lasts 20 years, and then war broke out.

 Berry and Berry (1990) use this approach.
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. probit dispute  border caprat ally jio deml depl

Iteration 0:   log likelihood = -3667.7447  

Iteration 1:   log likelihood = -3352.8902  

Iteration 2:   log likelihood =  -3313.131  

Iteration 3:   log likelihood = -3309.6175  

Iteration 4:   log likelihood = -3309.5866  

Iteration 5:   log likelihood = -3309.5866  

Probit regression                                 Number of obs =      20142

LR chi2(6)      =     716.32

Prob > chi2     =     0.0000

Log likelihood = -3309.5866                       Pseudo R2       =     0.0977

------------------------------------------------------------------------------

dispute |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

border |   .6709295   .0387312    17.32   0.000     .5950176    .7468413

caprat |  -.0010414   .0001413    -7.37   0.000    -.0013184   -.0007644

ally |  -.2973491   .0398825    -7.46   0.000    -.3755174   -.2191808

jio |   -.006198   .0013492    -4.59   0.000    -.0088424   -.0035537

deml |  -.0165374   .0034323    -4.82   0.000    -.0232646   -.0098102

depl |  -23.45946    5.82678    -4.03   0.000    -34.87974   -12.03918

_cons |  -1.651092   .0526098   -31.38   0.000    -1.754205   -1.547979

------------------------------------------------------------------------------

Note: 34 failures and 0 successes completely determined.
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 So we can see that being allies and being joint 
members of international organizations decrease 
the risk of a dispute.

 How can we include time in this model?

 Looking at the data earlier we could see that the 
effect of time that we are interested in is the 
string of zeros…how long a dyad has not had a 
dispute.
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 This suggests that the longer the peace has lasted  

the less likely a dispute is.

 In other words, the probability of conflict at time 

t is conditional on the probability of conflict at 

time t-1.
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. probit dispute  border caprat ally jio deml depl peaceyears

Iteration 0:   log likelihood = -3667.7447  

Iteration 1:   log likelihood = -2901.2495  

Iteration 2:   log likelihood = -2737.4396  

Iteration 3:   log likelihood = -2731.3405  

Iteration 4:   log likelihood = -2731.3184  

Iteration 5:   log likelihood = -2731.3184  

Probit regression                                 Number of obs =      20142

LR chi2(7)      =    1872.85

Prob > chi2     =     0.0000

Log likelihood = -2731.3184                       Pseudo R2       =     0.2553

------------------------------------------------------------------------------

dispute |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

border |   .3515146   .0437673     8.03   0.000     .2657322     .437297

caprat |  -.0009783    .000149    -6.56   0.000    -.0012704   -.0006862

ally |  -.2935278   .0444728    -6.60   0.000    -.3806929   -.2063628

jio |   .0108222   .0015529     6.97   0.000     .0077785    .0138659

deml |  -.0275271   .0037987    -7.25   0.000    -.0349724   -.0200818

depl |  -19.61321   6.234162    -3.15   0.002    -31.83194   -7.394476

peaceyears |  -.1001257   .0036322   -27.57   0.000    -.1072446   -.0930068

_cons |  -1.348062   .0575867   -23.41   0.000     -1.46093   -1.235194

------------------------------------------------------------------------------

Note: 77 failures and 0 successes completely determined.
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 As you can see time matters—conflict becomes 

less likely as the number of peaceful years 

increases.

 Since the baseline (the constant) is negative and 
peaceyears is negative, as time goes by the 

hazard of conflict gets smaller.
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 We could also include splines, which are a more 
general smooth function of all time point dummies.

 You can create splines in Stata:

. btscs dispute year dyad, g(peaceyears) nspline(3)

 This command creates both the peace counter as well 
as three points (known as knots) along a smooth 
function of time (see Beck, Katz, and Tucker 1998 
for a more detailed explanation of splines).

Splines
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. probit dispute  border caprat ally jio deml depl peaceyears _spline*

Iteration 0:   log likelihood = -3667.7447  

Iteration 1:   log likelihood = -2451.3166  

Iteration 2:   log likelihood = -2356.8304  

Iteration 3:   log likelihood =  -2351.521  

Iteration 4:   log likelihood = -2351.3876  

Iteration 5:   log likelihood = -2351.3874  

Probit regression                                 Number of obs =      20142

LR chi2(10)     =    2632.71

Prob > chi2     =     0.0000

Log likelihood = -2351.3874                       Pseudo R2       =     0.3589

------------------------------------------------------------------------------

dispute |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

border |   .3369159   .0468629     7.19   0.000     .2450664    .4287654

caprat |  -.0007732   .0001482    -5.22   0.000    -.0010638   -.0004827

ally |  -.2092891   .0471655    -4.44   0.000    -.3017319   -.1168464

jio |   .0069146   .0016371     4.22   0.000     .0037059    .0101234

deml |  -.0250491   .0040983    -6.11   0.000    -.0330816   -.0170165

depl |  -15.20443   5.947518    -2.56   0.011    -26.86135   -3.547511

peaceyears |  -.5315939   .0200018   -26.58   0.000    -.5707968    -.492391

_spline1 |  -.0098482   .0006208   -15.86   0.000     -.011065   -.0086313

_spline2 |   .0056757    .000479    11.85   0.000     .0047369    .0066146

_spline3 |  -.0016084   .0002206    -7.29   0.000    -.0020408   -.0011761

_cons |  -.5949071   .0663745    -8.96   0.000    -.7249988   -.4648154

------------------------------------------------------------------------------

Note: 13 failures and 0 successes completely determined.
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 As you can see that time has a non-monotonic 
effect—the splines have significant effects but in 
different directions. 

 Early periods of peace ( _spline 1) shift the 
baseline hazard down while the middle period 
(_spline 2) shifts it upward.

 In essence looking at both the peace years and the 
splines it would appear that the chance that the dyad 
fails (has a dispute) decreases for every year that the 
dyad survives (stays at peace).
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 We also could aggregate these data to just one 

row with the number of time units in which the 

event occurs.

 This would then necessitate continuous time 

models.
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 This only has one observation for each individual 

indicating the time the event happened.

 There are two variations dependent upon whether 

the independent variables vary over time (TVC) 

or not (NTVC).

Continuous
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Time Varying Covariates (TVC)
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dyad year dispute jio deml peaceyears

2020 1966 0 53 10 15

2020 1967 0 54.2 10 16

2020 1968 0 55.4 10 17

2020 1969 0 56.6 10 18

2020 1970 0 57.8 10 19

2020 1971 0 59 10 20

2020 1972 0 59.43 10 21

2020 1973 0 59.86 10 22

2020 1974 1 60.29 10 23

2020 1975 1 60.71 10 0

2020 1976 0 61.14 10 0

2020 1977 0 61.57 10 1

2020 1978 0 62 10 2



Non-Time Varying Covariates (NTVC)
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dyad dispute jio deml peaceyears

2020 1 53 10 4

2091 1 21.14 -9 16

345710 0 . -3 8

485623 1 13.88 -7 65

2020 0 69.17 4 23

2020 1 59 2 1



 As we can see from the dispute data, the time at 
peace is 

 strictly positive.

 Is reset after a conflict, so there can be more than one 
dispute per dyad (multiple events).

 And can vary with time-varying covariates.

 While the time counter and splines can capture 
the conditional effects of time, there is a whole 
class of models that more specifically model the 
hazard of events.
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 As Box-Steffensmeier and Jones (2004) mention 

there are a number of models where you can 

explicitly assume a distribution for the hazard 

rate.

 I am going to go over the logic of event history 

before delving into the parametric models—

models where we can estimate the hazard given a 

number of covariates and assumptions about the 

hazard distribution.
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 Let’s begin by defining T as a positive random 
variable measuring survival time.

 We assume that T is continuous.

 What we observe is a value of T, called t.

 The possible values of T have a probability 
distribution characterized by a PDF: f(t) and a 
CDF, F(t).
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 f(t) can be considered as the estimate of the 

instantaneous probability that the event (a 

dispute) occurs.

f(t) = lim
∆ 𝑡→0

𝑃(𝑡 ≤ 𝑇 ≤ 𝑡+ ∆𝑡)

∆𝑡

 Thus as ∆𝑡 gets infinitesimally small you get an 

instantaneous estimate of the probability of 

failure at time t.
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 We are also interested in the survivor function, 

S(t)—the probability of surviving at time t.

 As you might guess the chances of surviving past 

t are related to the chance of dying at t.

S(t) = 1 - F(t) = P(T ≥ 𝑡)
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 Therefore the failure and the survival rates are 
related to each other.

 This relation is given by the hazard rate.

h(t) = 
𝑓(𝑡)

𝑆(𝑡)

 In words, the hazard rate is the conditional failure 
rate—the rate that units fail by t given that they have 
survived until t.
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 The hazard rate, the survivor function, and the 

density functions are mathematically linked so 

that if you can specify one then you can 

determine the others.

 The hazard rate is what the literature (and we) are 

going to be focused on for the next week.
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 The hazard rate can vary from 0 to infinity (and 
beyond!).

 When the risk of something is zero (me being 
declared president of the universe by Gary King), the 
hazard is zero.

 When the hazard rate nears infinity, it means the 
certainty of failure in that instant.

 Thus the hazard rate is not limited to a 0—1 range 
like probability.
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 The (continuous) cumulative hazard function is 

given by:

H(t) =  0
𝑡
ℎ 𝑢 𝑑𝑢

Which can also be (and more often is) seen as:

H(t) = -ln 𝑆(𝑡)
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 As you might be able to guess, there are several 

issues we need to address when trying to model 

the hazard rate given the data that we have.

 For example, the democratic peace data ranged 

from 1951 to 1985.

 We lack information about what happened before

1951 and after 1985.
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 Censoring happens when the full event history of a unit is unobserved.

 In political science we are likely to observe right censoring.

 For example, two dyads (USA-Ecuador and China-South Korea) had 
disputes in 1971.

 The peace year count would both start over in 1972.

 But what if the US and Ecuador had a conflict in 1986 but China and S. 
Korea did not?

 Both would have the same duration time, but the observations are clearly 
different.

 Also possible to have left censoring—US-Ecuador had a dispute in 1965 
that was not coded.

Censoring
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 Right-censored: _|___________|_X_ time

 Left-censored:   _X_|___________|_ time

Censoring
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 Now, the dataset also begins at a set time, so we lack 
information about what happened prior to the data.

 The time (history) before 1951 in the dispute data 
would therefore be left-truncated.

 Truncation means that the unit could have failed 
before we started measuring meaning that we never 
would have measured the unit.

 A smoker dies before a study would be truncated from the 
study.

Truncation
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 In estimating the likelihood of the sampled duration times, 
you can account for right-censoring and left-truncation.

 The likelihood of observing the sample that we have is 

determined by ti *, which represents the ith censored case 
equal to the last observed period even though i survives 
past t*.

 If the case is uncensored then 𝑡𝑖 ≤ 𝑡∗.

 We can create a censor indicator 𝛿𝑖 that codes censored 
cases.
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𝛿𝑖 =  
1 𝑖𝑓 𝑡𝑖 ≤ 𝑡∗

0 𝑖𝑓𝑡𝑖 > 𝑡∗

 Therefore when 𝛿𝑖 = 1 the observation is 
uncensored and 𝛿𝑖 = 0 it is censored.

 Given what we know about right-censoring we 
can now specify the likelihood of observing our 
duration data:

L =  𝑖=1
𝑛 𝑓(𝑡𝑖)

𝛿𝑖 𝑆(𝑡𝑖)
1 −𝛿𝑖
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 But before we start with semi-parametric and 

parametric models (and down the rabbit hole), 

what can we learn through non-parametric 

means?

 And what on God’s green earth are these terms?
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 What are the differences between them?

 Nonparametric—no x’s, no distribution, lets the 
data “speak” 

 Semi-parametric—probability of failure given x’s 
but no assumptions about distribution of the error, ε. 
At a specific failure time (0,1)

 Parametric—assumes error distribution and 
probability given covariates. At all possible failure 
times.

Nonparametric, semi-parametric, & parametric
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 Let’s use some actual data.

 I am going to use data on the duration of civil war 

from Collier, Hoeffler, and Soderbom (2004).
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 First, you have to tell Stata about the structure of 

your data.

 It helps minimize error by having to specify these 

options with every command you run.

stset time_of_failure (or censoring)_var, /// 

failure(one_if_failure_var)

Stset
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 _t0 and _t = timespan starts at _t0 and ends 

at _t

 In these data _t0 is January 1960

 _d = outcome at end of time span 

 In these data it is 1 if the war ended before 1999, 0 

otherwise.

 _st = 1 if the observation will be used in the 

analysis, 0 otherwise.

 In these data since there are no civil wars that started 

before 1960, _st always ==1 

Stset creates four variables
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. sts list

failure _d:  cens

analysis time _t:  mo

id:  indsp

Beg.          Net            Survivor      Std.

Time    Total   Fail   Lost           Function     Error     [95% Conf. Int.]

-------------------------------------------------------------------------------

1       55      4      0             0.9273    0.0350     0.8177    0.9721

2       51      3      0             0.8727    0.0449     0.7515    0.9372

4       48      1      0             0.8545    0.0475     0.7301    0.9245

6       47      2      0             0.8182    0.0520     0.6884    0.8978

10       45      2      0             0.7818    0.0557     0.6479    0.8697

12       43      1      0             0.7636    0.0573     0.6280    0.8553

13       42      2      0             0.7273    0.0601     0.5890    0.8257

16       40      1      0             0.7091    0.0612     0.5698    0.8105

21       39      1      0             0.6909    0.0623     0.5508    0.7951

22       38      1      0             0.6727    0.0633     0.5320    0.7796

27       37      1      0             0.6545    0.0641     0.5134    0.7638

36       36      1      0             0.6364    0.0649     0.4950    0.7479

45       35      1      0             0.6182    0.0655     0.4768    0.7318

46       34      1      0             0.6000    0.0661     0.4587    0.7155

49       33      1      0             0.5818    0.0665     0.4408    0.6990

55       32      1      0             0.5636    0.0669     0.4231    0.6824

63       31      1      0             0.5455    0.0671     0.4056    0.6656

64       30      1      0             0.5273    0.0673     0.3882    0.6486

69       29      1      0             0.5091    0.0674     0.3710    0.6315

73       28      1      0             0.4909    0.0674     0.3539    0.6142

74       27      2      0             0.4545    0.0671     0.3204    0.5792

85       25      1      0             0.4364    0.0669     0.3038    0.5614

88       24      1      1             0.4182    0.0665     0.2875    0.5435

91       22      1      0             0.3992    0.0661     0.2704    0.5248

98       21      1      1             0.3802    0.0657     0.2535    0.5059

102       19      1      1             0.3602    0.0652     0.2356    0.4860

104       17      0      1             0.3602    0.0652     0.2356    0.4860

121       16      1      0             0.3376    0.0649     0.2152    0.4642

129       15      1      0             0.3151    0.0643     0.1953    0.4420

134       14      1      0             0.2926    0.0636     0.1759    0.4194

143       13      1      0             0.2701    0.0625     0.1570    0.3964

145       12      1      0             0.2476    0.0612     0.1387    0.3729

148       11      1      0             0.2251    0.0597     0.1209    0.3491

155       10      1      0             0.2026    0.0578     0.1037    0.3247

170        9      1      0             0.1801    0.0556     0.0872    0.2998

172        8      1      0             0.1576    0.0530     0.0714    0.2743

189        7      0      1             0.1576    0.0530     0.0714    0.2743

196        6      1      0             0.1313    0.0503     0.0530    0.2458

198        5      0      2             0.1313    0.0503     0.0530    0.2458

203        3      1      0             0.0875    0.0490     0.0219    0.2117

286        2      1      0             0.0438    0.0395     0.0041    0.1689

364        1      1      0             0.0000         .          .         .

-------------------------------------------------------------------------------
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 One of the simplest ways at looking at what the 

survivor function might look like is to histogram 

the length of the 55 conflicts in the estimate data.
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Histogram of survival
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 The simplest means of survival analysis is the 
Kaplan-Meier estimator.

 It is a non-parametric estimate of the survival function:

 𝑆 𝑡 =  

𝑗 | 𝑡𝑗 ≤ 𝑡

𝑛𝑗 − 𝑑𝑗

𝑛𝑗

Where  𝑛𝑗 is the number of individuals at risk at time 

𝑡𝑗, and 𝑑𝑗 is number of failures at time 𝑡𝑗
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Can also graph by dichotomous variables
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And whether units were censored
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And the cumulative hazard
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Methods of smoothing will be discussed next week.
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** List Kaplan-Meier survival estimates **

sts list

sts graph

*By a dichotomous variable **

sts graph, by(ginmis)  

** Showing where censored obs left data **

sts graph, censored(number)

** Cumulative Hazard **

sts graph, by(ginmis)   cumhaz

** Smoothed Hazard Function **

sts graph, hazard by(ginmis) kernel(gaussian)

Stata commands
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 So now, how do we create a model that allows us 

to capture both the occurrence (or non-

occurrence) of an event (death) as well as how 

long the unit lasted (lived) before the event?
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 We move to looking at parametric models. 

 We are starting from models that assume a 

distribution of the hazard rate.

 Next week, we will look at semi-parametric 

models where we do not specify the hazard 

distribution.
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 The easiest model where we assume that the hazard 
rate is constant (flat) across time.

h(t) = λ where λ > 0 and t > 0

 Specifying the hazard rate allows us to determine the 
survival and density functions:

S(t) = 𝑒−λ(𝑡)

f(t) = λ 𝑡 𝑒−λ(𝑡)

Exponential model
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 We can now parameterize a model to estimate 

what the expected duration time of observation i:

E(𝑡𝑖) = 𝑒𝜷𝑿

and parameterize the hazard rate:

h(t | x) = 𝑒−(𝜷𝑿)
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 As we know from previous classes: 

𝜷𝑿 = (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + …𝛽𝑗𝑥𝑖𝑗 )

 This allows us to show an important characteristic of 
the exponential model:

h(t | x) = 𝑒−(𝛽𝑜) 𝑒−(𝜷𝑿)

 This shows that the baseline hazard rate is given by 
𝛽𝑜.
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 Changes to the baseline hazard rate in the 

exponential model are in multiples of the baseline 

hazard.

ℎ𝑖 𝑡 𝑥1=1)

ℎ𝑖 𝑡 𝑥1=0)
= 𝑒−𝛽1

Proportional hazards property
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 The exponential distribution is known as a 

“memoryless” because the distribution of the 

survival time is not affected by knowing how 

long the unit has survived.
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. streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv d2-d4, 

dist(exponential) nohr

failure _d:  cens

analysis time _t:  mo

id:  indsp

Iteration 0:   log likelihood = -101.63735  

Iteration 1:   log likelihood = -90.265345  

Iteration 2:   log likelihood = -80.526611  

Iteration 3:   log likelihood = -80.430147  

Iteration 4:   log likelihood = -80.429995  

Iteration 5:   log likelihood = -80.429995  

Exponential regression -- log relative-hazard form 

No. of subjects =           55                     Number of obs =      4625

No. of failures =           48

Time at risk    =         4625

LR chi2(12)     =     42.41

Log likelihood  =   -80.429995                     Prob > chi2     =    0.0000

------------------------------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gini_m |  -.1244463   .0284179    -4.38   0.000    -.1801444   -.0687482

ginmis |  -5.867928   1.277403    -4.59   0.000    -8.371591   -3.364265

rgdpch |   .3651031   .1322248     2.76   0.006     .1059472     .624259

elf |  -.0628267   .0258742    -2.43   0.015    -.1135392   -.0121143

elf2 |   .0581252   .0270411     2.15   0.032     .0051256    .1111247

logpop |  -.3163905   .1230657    -2.57   0.010    -.5575948   -.0751863

y70stv |   .0077905   .4625409     0.02   0.987    -.8987729    .9143539

y80stv |  -1.420202   .5203341    -2.73   0.006    -2.440038   -.4003656

y90stv |  -1.162059   .5416506    -2.15   0.032    -2.223675   -.1004433

d2 |  -.8067415   .5742936    -1.40   0.160    -1.932336    .3188533

d3 |  -.0010657   .5606172    -0.00   0.998    -1.099855    1.097724

d4 |   .6098389   .4464024     1.37   0.172    -.2650937    1.484771

_cons |   7.433105   2.707863     2.75   0.006     2.125791    12.74042

------------------------------------------------------------------------------

Collier et al. (2004), Exponential regression
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Exponential Hazard Function
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Survival function
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Cumulative hazard
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Over the range of ELF
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 Looking for a more flexible alternative, most turn 

to the Weibull, a distribution often seen in 

political science.

 It’s defining characteristic is that the baseline 

hazard rate is monotonic—it can be always 

increasing, always decreasing, or flat.

Weibull
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ℎ 𝑡 = λ𝑝(λ𝑡)𝑝−1 where t > 0, λ > 0, p > 0

 p is the shape parameter.

 When p >1, the hazard is monotonically increasing.

 When p < 1, the hazard is monotonically decreasing.

 When p = 1, the hazard is flat at value λ (therefore the 

exponential is nested in the Weibull).

 λ is the scale parameter.

Weibull hazard rate distribution
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 You can then parameterize the hazard rate to model the effect of some x’s.

ℎ 𝑡 𝑥) = 𝑝𝑡𝑝−1𝑒(𝛽𝑗𝑥)

 We can now maximize a log-likelihood equation based on the one we saw above:

L =  𝑖=1
𝑛 𝑓(𝑡𝑖)

𝛿𝑖 𝑆(𝑡𝑖)
1 −𝛿𝑖

𝐿 𝑡 λ, 𝑝) =  

𝑖=1

𝑛

λ𝑝(λ𝑡)𝑝−1𝑒−(λ𝑡)
𝑝 𝛿𝑖

𝑒−(λ𝑡)
𝑝

1 − 𝛿𝑖

 Once you estimate the model, you can use the estimated shape parameter (p) to test 
whether the hazard is actually flat—e.g. the observations are duration independent.

𝑧 =
𝑝 − 1

𝑠𝑒(𝑝)
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. streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv ///

>  d2-d4, dist(weibull) nohr nolog

failure _d:  cens

analysis time _t:  mo

id:  indsp

Weibull regression -- log relative-hazard form 

No. of subjects =           55                     Number of obs =      4625

No. of failures =           48

Time at risk    =         4625

LR chi2(12)     =     37.65

Log likelihood  =   -80.341859                     Prob > chi2     =    0.0002

------------------------------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gini_m |  -.1221709   .0288244    -4.24   0.000    -.1786657    -.065676

ginmis |  -5.746803   1.302304    -4.41   0.000    -8.299271   -3.194334

rgdpch |   .3579029   .1331665     2.69   0.007     .0969013    .6189045

elf |  -.0615579    .025954    -2.37   0.018    -.1124269   -.0106889

elf2 |   .0572613   .0270164     2.12   0.034     .0043101    .1102125

logpop |  -.3092118   .1241655    -2.49   0.013    -.5525717   -.0658519

y70stv |   .0223796   .4641904     0.05   0.962     -.887417    .9321761

y80stv |  -1.384908   .5263604    -2.63   0.009    -2.416556    -.353261

y90stv |  -1.108178   .5550966    -2.00   0.046    -2.196148   -.0202086

d2 |  -.6810668   .6493246    -1.05   0.294     -1.95372    .5915859

d3 |   .1526106   .6702459     0.23   0.820    -1.161047    1.466268

d4 |   .8091091   .6495045     1.25   0.213    -.4638963    2.082115

_cons |   7.402131   2.691839     2.75   0.006     2.126223    12.67804

-------------+----------------------------------------------------------------

/ln_p |  -.0818573   .1986233    -0.41   0.680    -.4711518    .3074373

-------------+----------------------------------------------------------------

p |   .9214035   .1830122                      .6242828    1.359936

1/p |   1.085301   .2155661                       .735329    1.601838

------------------------------------------------------------------------------
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Hazard Function
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Survival

MLE Class 12 75

0
.2

.4
.6

.8
1

S
u

rv
iv

a
l

0 100 200 300 400
analysis time

Weibull regression



Cumulative Hazard
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 The Gompertz distribution is another popular 
distribution.

 It differs from the Weibull in that the hazard rate is 
considered an exponential function of duration times.

 It too is monotonic.

ℎ 𝑡 = 𝑒𝛾𝑡𝑒λ

Where 𝛾 is the shape parameter, and λ = 𝑒𝛽𝑋

Gompertz
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.  streg gini_m ginmis rgdpch elf elf2 logpop y70stv y80stv y90stv ///

>  d2-d4, dist(gompertz) nohr nolog

failure _d:  cens

analysis time _t:  mo

id:  indsp

Gompertz regression -- log relative-hazard form 

No. of subjects =           55                     Number of obs =      4625

No. of failures =           48

Time at risk    =         4625

LR chi2(12)     =     44.15

Log likelihood  =   -79.524695                     Prob > chi2     =    0.0000

------------------------------------------------------------------------------

_t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

gini_m |   -.127802   .0285724    -4.47   0.000    -.1838028   -.0718012

ginmis |  -6.111802   1.299092    -4.70   0.000    -8.657975   -3.565629

rgdpch |   .3803728   .1341579     2.84   0.005     .1174281    .6433174

elf |  -.0652722   .0262721    -2.48   0.013    -.1167646   -.0137799

elf2 |   .0588794   .0275237     2.14   0.032     .0049339    .1128248

logpop |  -.3115859   .1224821    -2.54   0.011    -.5516464   -.0715254

y70stv |  -.0404225   .4672147    -0.09   0.931    -.9561466    .8753015

y80stv |  -1.530275   .5310187    -2.88   0.004    -2.571052   -.4894973

y90stv |  -1.302327   .5539067    -2.35   0.019    -2.387964   -.2166894

d2 |  -.9082049    .578435    -1.57   0.116    -2.041917    .2255069

d3 |  -.1798546    .574289    -0.31   0.754     -1.30544    .9457313

d4 |   .0726612   .6031641     0.12   0.904    -1.109519    1.254841

_cons |   7.578502   2.697252     2.81   0.005     2.291986    12.86502

-------------+----------------------------------------------------------------

/gamma |   .0050977   .0035916     1.42   0.156    -.0019418    .0121371

------------------------------------------------------------------------------
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Hazard function
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Survival
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Cumulative hazard
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. estout exponential weibull gompertz, cells(b(star) se(par)) ///

>    stats(N  ll p gamma)

------------------------------------------------------------

exponential         weibull gompertz

b/se            b/se            b/se   

------------------------------------------------------------

_t                                                          

gini_m -.1244463***    -.1221709***     -.127802***

(.0284179)      (.0288244)      (.0285724)   

ginmis -5.867928***    -5.746803***    -6.111802***

(1.277403)      (1.302304)      (1.299092)   

rgdpch .3651031**      .3579029**      .3803728** 

(.1322248)      (.1331665)      (.1341579)   

elf             -.0628267*      -.0615579*      -.0652722*  

(.0258742)       (.025954)      (.0262721)   

elf2             .0581252*       .0572613*       .0588794*  

(.0270411)      (.0270164)      (.0275237)   

logpop -.3163905*      -.3092118*      -.3115859*  

(.1230657)      (.1241655)      (.1224821)   

y70stv           .0077905        .0223796       -.0404225   

(.4625409)      (.4641904)      (.4672147)   

y80stv          -1.420202**     -1.384908**     -1.530275** 

(.5203341)      (.5263604)      (.5310187)   

y90stv          -1.162059*      -1.108178*      -1.302327*  

(.5416506)      (.5550966)      (.5539067)   

d2              -.8067415       -.6810668       -.9082049   

(.5742936)      (.6493246)       (.578435)   

d3              -.0010657        .1526106       -.1798546   

(.5606172)      (.6702459)       (.574289)   

d4               .6098389        .8091091        .0726612   

(.4464024)      (.6495045)      (.6031641)   

_cons            7.433105**      7.402131**      7.578502** 

(2.707863)      (2.691839)      (2.697252)   

------------------------------------------------------------

ln_p

_cons                           -.0818573                   

(.1986233)                   

------------------------------------------------------------

gamma                                                       

_cons                                            .0050977   

(.0035916)   

------------------------------------------------------------

N                    4625            4625            4625   

ll -80.43       -80.34186        -79.5247   

p                .0000284        .0001753        .0000144   

gamma                                            .0050977   

------------------------------------------------------------
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 These parametric models—the Exponential, Weibull, and 
Gompertz—all made assumptions about the distribution of 
the errors.

 How to chose between them?
 LR or Wald test for nested models

 AIC for non-nested

 Run a Generalized Gamma and test whether
 κ = 1 for Weibull

 κ =p =1 for Exponential

 p =1 for Gamma (Stata calls it sigma rather than p)

 Other slightly less common models include the log-normal 
and log-logistic.
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 From Datwyler and Stucki (2011)
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 Next week, we will examine the most common 

semi-parametric model, the Cox proportional 

hazards model, that does not make a 

distributional assumption.
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 Questions?

 Questions on the readings?

MLE Class 12 86


